Saya senang menjadi siswa SMA 63
Contoh Soal Logaritma
Sederhanakan logaritma berikut ini!
2
log 25 .
5
log 4 +
2
log 6 –
2
log 3
9
log 36 /
3
log 7
9^(
3
log 7)
Jawab:
Sebuah. 2
log 25 .
5
log 4 +
2
log 6 –
2
log 3
= 2 log 5 2 . 5 log 2 2 + 2 log (3,2 / 3)
= 2,2. 2 log 5. 5 log 2+ 2 log 2
= 2. 2 log 2 + 1
= 2. 1 + 1
= 3
b. 9
log 4 /
3
log 7
= 3 ^ 2 log 2 2 / 3 log 7
= 3 log 2/ 3 log 7
= 7 log 2
c. 9^(
3
log 7)
= 3 2 ^ ( 3 log 7)
= 3 ^ (2. 3 log 7)
= 3 ^ ( 3 log 49)
= 49
Contoh Soal Logaritma 1
Diketahui 3log 5 = x dan 3log 7 = y. maka, nilai dari 3log 245 1/2 adalah … ? (EBTANAS ’98)
Pembahasan 1
3log 245 ½ = 3log (5 x 49) ½
3log 245 ½ = 3log ((5) ½ x (49) ½)
3log 245 ½ = 3log (5) ½ + 3log (72) ½
3log 245 ½ = ( 3log 5 + 3log 7)
3log 245 ½ = (x + y)
Jadi, nilai dari 3log 245 1/2 adalah (x + y).
Contoh Soal Logaritma 2
Jika b = a4, nilai a dan b positif, maka nilai alog b – blog a adalah …? (UMPTN ’97)
Pembahasan 2
Diketahui bahwa b = a4, maka dapat disubstitusi kedalam perhitungan:
alog b – blog a = alog a4 –
alog b – blog a = 4 (alog a) – ( alog a)
alog b – blog a = 4 –
alog b – blog a =
Jadi, nilai dari alog b – blog a pada soal tersebut adalah .
Contoh Soal Logaritma 3
Jika alog (1- 3log ) = 2, maka tentukanlah nilai a. (UMPTN ’97)
Pembahsan 3
Jika kita buat nilai 2 menjadi sebuah logaritma dengan bilangan pokok logaritmanya adalah a menjadi alog a2= 2, maka didapat :
alog (1- 3log ) = 2
alog (1- 3log ) = alog a2
Nilai numerus kedua logaritma tersebut bisa menjadi sebuah persamaan:
1- 3log = a2
3log 3 – 3log = a2
3log 3 – 3log 3(-3) = a2
3log = a2
3log 34 = a2
4 = a2
Sehingga diperoleh nilai a = 2
Komentar
Posting Komentar